HELPFUL HINTS

1. Some brands of primers are slightly larger than others. If you plan on reloading your cases many times, you can use the smaller diameter primer for the primer hole that has been enlarged, the large primers will still hold snugly.

2. Certain combinations of components will give higher velocities than others. The amount of difference is generally not important. However, if you are a purist and desire the exact amount, consult the current load data supplied from the powder manufacturers. There is no better source than the literature supplied free or at nominal cost.

3. For a portable set-up, mount your Lee Load-All II to a piece of plywood or board. This can be C-clamped to any table, desk or counter top. Fabric glued to the bottom of the board will keep it from damaging the surface on which it’s clamped.

4. If reloading shells for the same gun from which they’re fired, you can eliminate the variation and operator technique. As much as 150 total differences from listed charges may be encountered. This should be on the light side for safety reasons.

Some brands of primers are slightly larger than others. If not, apply a little more pressure and raise handle to see if the crimp feel some resistance. If in doubt, use too little.

CRIMP PROBLEMS
Bed crimps are always due to using the wrong starter or not having the correct wed. This is frequently due to incorrect or outdated information found in reloading handbooks or literature supplied by component manufacturers. If you don’t get a good crimp, check your components and bushings. If they are correct, change to a suitable length wed.

LOADS, SHELLS AND PRIMERS
The loads listed on your Lee Charge Table are the result of many hours of sifting through the abundance of data. Loads that exhibited uniform results with a variety of components were selected. The only factor that must be considered for any Lee loads is the type of shell. Loads were selected for plastic cases, such as Federal, Champion II, Remington XP or Winchester Compression Formed cases, use less primer for the same velocity and pressures. Shells made with a paper base, including plastic or paper case, require slightly more powder—about 5% more—to give the same velocity. So it is important to know which type of shell you’re loading and select the load data from the correct charge chart.

Primer brand will make a slight difference; not enough though to concern the average shooter. Federal primers are the most powerful and Remington are the lightest. All others are in between these extremes. All are satisfactory for use with your Load-All II.

WEIGHTING CHARGES
It’s not necessary to check charges with a scale. However, should you desire to do so, you can certainly to take a shell out of the normal loading sequence to insure the powder is properly agitated between charges and the press is subject to the stresses of loading. Otherwise, your charges will scale on the light side. This might tempt you to use a larger bushing and could result in an overcharge. The largest errors will be caused by powder density variation and operator techniques. As much as 150 total differences from listed charges may be encountered. This should be on the light side for safety reasons.

TO SUM UP
1. Use only plastic wads
2. Primer type is unimportant for most loads
3. Shells made of one-piece plastic construction, including the base, require less powder.
4. Paper shells or plastic shells with a paper base will usually require slightly more powder to give the same velocity.

LOADING STEEL SHOT
Steel shot is easily loaded with the Lee Load-All II. Follow the instructions from the supplier of steel shot. Lee Precision, Inc. has no load information. Move the wad guide up 1/8” to accommodate the skirts of the larger shot and the shot does not stick in the drop tube.

BASIC STEEL SHOT LOADS

Hodgdon HS-6 #4 Buck 27 Hodgdon HS-6 #4 Buck 20 Hodgdon HS-6 #4 Buck 19 Hodgdon HS-6 #4 Buck 19 Hodgdon HS-6 #4 Buck 18

LOADING STEEL SHOT

Steel shot is easily loaded with the Lee Load-All II. Follow the instructions from the supplier of steel shot. Lee Precision, Inc. has no load information. Move the wad guide up 1/8” to accommodate the skirts of the larger shot and the shot does not stick in the drop tube.

ELITE CAVITY BUCKSHOT BULLET MOLD
Explore cavity precision machined mold produces 18 linked pellets per cast. No need to individually count pellets—simply map those strands into your 12 gauge shell. Each cast produces enough pellets to load two 3-shot clusters.

.320 bullet diameter #4 Buckshot No. 950B16 .350 bullet diameter #6 Buckshot No. 504B16 .380 bullet diameter #8 Buckshot No. 503B16

SPECIAL INSTRUCTIONS FOR 3” SHOTS ONLY
1. Remove screw that holds wad guide to composite. Re-install 1/4” higher.
2. Do not attempt to feed buckshot through the hopper. Buckshot should be counted and placed in the shell by hand in layers. Do not let the shot stick in the drop tube.

BUCKSHOT

To ensure uniform charges, do not let the shot stick in the drop tube. To insure uniform charges, do not let the shot stick in the drop tube.

LARGE SIZE SHOT
Shot sizes are larger as .42s and .50s (#4 and #2 in 16 and 20 gauges) can be fed through the hopper, but will stick in the drop tube unless it is raised to the raised to the slot of the shell. It’s a good idea when using large size shot to bump the handle two or three times dislodged with the head of your hand before and after bumping the shot. If in doubt or using any possible combination of components, You’ll find the Lee Charge Table adequate for 95% of all your loading needs. The shot boards are designed to dispense the correct weight of No. 6 shot. Smaller size shot will give heavier charges and large size shot will be slightly on the light side. Exception is made with 1/4” buckshot. This is made to give very close charges for 7/8” and 8 1/2 size shot. This was done for the trapshooter.

NO. 90281
.360 ball diameter .330 ball diameter .240 ball diameter

LOAD TWO 12 GAUGE SHOT SHELLS.

18 linked pellets per cast. No need to individually count pellets—simply map those strands into your 12 gauge shell. Each cast produces enough pellets to load two 3-shot clusters.

Hodgdon HS-6 #4 Buck 27 Hodgdon HS-6 #4 Buck 20 Hodgdon HS-6 #4 Buck 19 Hodgdon HS-6 #4 Buck 19 Hodgdon HS-6 #4 Buck 18

PARTS LIST FOR THE LEE LOAD-ALL II

Full length steel sizes: 12 gauge LA1046 20 gauge LA1048

Dies and carrier assembly, completea: LA1049 Shot and powder hopper LA1054 Cover for hopper LA1055 Spring Guide LA1915 Base LA163 Shell holder: LA1066 Main spring LA1062 Handle or lever with grip LA1068 Links from handle to base, pair LA1076 Retainers for links LA1076

*IMPORTANT: When ordering these parts, specify for 12, 16 or 20 gauge.

LOADER RELOADING PRODUCTS are guaranteed to wear out or break from normal use for two full years or they will be repaired or replaced at no charge if returned to the factory. Any Lee product of current manufacture, regardless of age or condition, will be reconditioned to new, including a new guarantee, if returned to the factory with payment equal to half the current retail price.

CAUTION
Ammunition reloading can be dangerous if done improperly and should not be attempted by persons not willing and able to read and follow instructions ex-

tensively. Children should not be permitted to reload ammunition without strict par-

ent supervision. Always wear safety glasses when reloading and storage. Ammunition loaded with these tools and data should only be used in modern guns in good condi-
tion. We do not accept re-

sponsibility for ammunition loaded with these tools or data which may be used on other guns as we have no control over the manufacture and storage of the reloading procedure and techniques. Primmers and gases, like gasoline and matches, can be dangerous if improperly handled or encoun-

LED RELOADING PRODUCTS are guaranteed to wear out or break from normal use for two full years or they will be repaired or replaced at no charge if returned to the factory. Any Lee product of current manufacture, regardless of age or condition, will be reconditioned to new, including a new guarantee, if returned to the factory with payment equal to half the current retail price.

CAUTION
Ammunition reloading can be dangerous if done improperly and should not be attempted by persons not willing and able to read and follow instructions ex-

tensively. Children should not be permitted to reload ammunition without strict par-

ent supervision. Always wear safety glasses when reloading and storage. Ammunition loaded with these tools and data should only be used in modern guns in good condi-
tion. We do not accept re-

sponsibility for ammunition loaded with these tools or data which may be used on other guns as we have no control over the manufacture and storage of the reloading procedure and techniques. Primmers and gases, like gasoline and matches, can be dangerous if improperly handled or encoun-
PRIMERS
Any brand of primer may be used. When us-
ing fine-graded ball powder, it’s best to use a primer with a covered flash hole to prevent the powder from entering the primer. This is not dangerous, but may upon firing, leak gas around the primer. It could drive the case into the chamber and disable the gun until the shell is removed with a cleaning rod.
CAUTION To reduce the chance of mass detonation of primers in the primer feed, use only primers that have a covered flash hole.

POWDER
After determining the amount of shot you de-
sire to use, select the powder type and proper powder and shot bushing from the charge table. Loads listed on the charge table have been compiled from load data supplied by the powder manufacturers. It has been condensed to a simplified form for use with your Load-
All II. Only loads that produce uniform results with a selling feature designed to impress the purchaser with the implied extra powder. The wad apply the wad pressure. The important and basic difference in the one piece wad is the length of the wad and the amount of space it occupies within the shell. It is important that the shell be completely filled to make a good crimp. Once the weight of shot is selected, the only variable component is the wad. This information is supplied by the wad manufacturer, usually printed on the bag or carton they are packaged in. The correct wads for trap and skeet loads are readily available because they are the cases most often loaded. Wad types are usually listed on load data supplied by powder manufacturers. See your local sporting goods dealer or write directly to the powder manufacturer for a copy of the latest load data.

CASES
Your Lee Load-All II will hold all types of cases with ease. However, cases made for trap and skeet shooting are designed for reloading and will reload more times before wearing out. Cases with split ends, cracked or crushed cases indicate the wad should be discarded. High brass cases or low brass case refers only to the brass length on the outside of the case. This does not have any bearing on the strength of the case or the load it will accept. The brass length is only a selling feature designed to impress the buyer with the implied extra powder. The important consideration in case selection is the type of base wad. Cases with a paper base wad require slightly more powder for the same velocity. Less powder must be used in cases with plastic base wad or no base wad, such as Remington XP1, Winchester AA, Winchester Compression, Federal Champion II, .22 Magnum II. Be sure you can select your load data from the proper column on the charge table.

SHOT
All of the current manufacturers of shot supply good quality shot. Selection by lowest price is suggested.

WAD S
Your Lee Load-All II is designed to load plastic wads only, preferably the same variety. When using these, no wad pressure is required and if applied, will quickly neutralize itself. Crimping the shell in reality applies the wad pressure. The important and basic difference in the one piece wad is the length of the wad and the amount of space it occupies within the shell. It is important that the shell be completely filled to make a good crimp. Once the weight of shot is selected, the only variable component is the wad. This information is supplied by the wad manufacturer, usually printed on the bag or carton they are packaged in. The correct wads for trap and skeet loads are readily available because they are the cases most often loaded. Wad types are usually listed on load data supplied by powder manufacturers. See your local sporting goods dealer or write directly to the powder manufacturer for a copy of the latest load data.

CONVERTING TO ANOTHER GAUZE
The Lee Load-All II is easily and economically converted to another gauge.

Disassembly and Conversion
1. Slip the shell into the wad guide at STATION 3.
2. Remove two screws holding the nameplate. Remove charge bar and install correct shot bushing and powder bushing as shown on the charge table. Reassemble, being careful to not overtighten the screws.
3. Note that the bushing against the load data. Too much shot or powder will cause dangerous pressures.
4. Slip the charge guide to the left and fill the shot and powder hoppers. Note the powder hopper is the smaller one on the left, above the word POWDER on the nameplate.
5. Sort cases as to brand and type and discard the defective ones. Because in-
case length differs between brands and types, they require different length wads. It’s best to load one type at a time.

Before You Start Reloading
1. Install the primer punch, spring and primer guide into STATION 2.
2. Slip the primer die, grooved end up, over the shell. Place the shell in STATION 1 and pull down the handle. This will fill full length size and deprime the shell.

Now You Can Begin Reloading
Your Lee Load-All II is factory set and requires no adjustment.

STATION 1 Slip the sizing die, grooved end up, over the shell. Place the shell in STATION 1 and pull down the handle. This will fill full length size and deprime the shell.

STATION 2 Place a primer in the priming pocket at STATION 2. Move the shell into STATION 2 and pull down the handle. The sizing die will automatically be pushed off at this station. Remove it completely from the shell.

STATION 3 Slip the shell into the wad guide at STATION 3.

STATION 4 Place the shell under the proper crimp starter. Keep an inward fold of the shell mouth toward the front for proper alignment with the segmented starter. Depress the handle to a full stop. Some shells may require a two-second pause to set the plastic.

Note: The 8-segment crimp starter is in the front on the 12 GAUGE only. The other gauges have the 8-segment starter in the front. Be sure you select the correct one.

STATION 5 Immediately move the shell into the shell holder at STATION 5 and com-
plete the crimp. You should have a perfectly cramped shell with a nice, tapered end.

IMPORTANT A good crimp can only be obtained if the wad is the correct length. After the shot is added, there should be about 1/4 inch of shell above the shot on a 12 gauge; about 7/8 inch for the 20 gauge, and just slightly more for the 16 gauge. If the crimp is too deep with a hole in the car-
ter, use a longer wad. Mashed in crumbs or crushed cases indicate the wad should be shorter.

STATION 6a Slip the charge bar to the left to add the shot. Raise the handle.

STATION 6b Slip the charge bar to the right. This adds the powder.